Solution of Helmholtz problems by knowledge-based FEM
نویسندگان
چکیده
The numerical solution of Helmholtz’ equation at large wavenumber is very expensive if attempted by ”traditional” discretisation methods (FDM, standard Galerkin FEM). For reliable results, the mesh has to be very fine. The bad performance of the traditional FEM for Helmholtz problems can be related to the deterioration of stability of the Helmholtz differential operator at high wavenumber. As an alternative, several non-standard FEM have been proposed in the literature. In these methods, stabilisation is either attempted directly by modification of the differential operator or indirectly, via improvement of approximability by the incorporation of particular solutions into the trial space of the FEM. It can be shown that the increase in approximability can make up for the stability loss, thus improving significantly the convergence behavior of the knowledge based FEM compared to the standard approach. In our paper, we refer recent results on stability and convergence of hand h-p-Galerkin (“standard”) FEM for Helmholtz problems. We then review, under the label of “knowledge-based” FEM, several approaches of stabilised FEM as well as high-approximation methods like the Partition of Unity and the Trefftz method. The performance of the methods is compared on a two-dimensional model problem.
منابع مشابه
An efficient method for the numerical solution of Helmholtz type general two point boundary value problems in ODEs
In this article, we propose and analyze a computational method for numerical solution of general two point boundary value problems. Method is tested on problems to ensure the computational eciency. We have compared numerical results with results obtained by other method in literature. We conclude that propose method is computationally ecient and eective.
متن کاملA Performance Study of High-order Finite Elements and Wave-based Discontinuous Galerkin Methods for a Convected Helmholtz Problem
The finite element method (FEM) remains one of the most established computational method used in industry to predict acoustic wave propagation. However, the use of standard FEM is in practice limited to low frequencies because it suffers from large dispersion errors when solving short wave problems (also called pollution effect). Various methods have been developed to circumvent this issue and ...
متن کاملStabilized FEM-BEM Coupling for Maxwell Transmission Problems
We consider the scattering of monochromatic electromagnetic waves at a dielectric object with a non-smooth surface. This paper studies the discretization of this problem by means of coupling finite element methods (FEM) and boundary element methods (BEM). Straightforward symmetric coupling as in [R. Hiptmair, Coupling of finite elements and boundary elements in electromagnetic scattering, SIAM ...
متن کاملOn the coupling of BEM and FEM for exterior problems for the Helmholtz equation
This paper deals with the coupled procedure of the boundary element method (BEM) and the finite element method (FEM) for the exterior boundary value problems for the Helmholtz equation. A circle is selected as the common boundary on which the integral equation is set up with Fourier expansion. As a result, the exterior problems are transformed into nonlocal boundary value problems in a bounded ...
متن کاملApplication of Decoupled Scaled Boundary Finite Element Method to Solve Eigenvalue Helmholtz Problems (Research Note)
A novel element with arbitrary domain shape by using decoupled scaled boundary finite element (DSBFEM) is proposed for eigenvalue analysis of 2D vibrating rods with different boundary conditions. Within the proposed element scheme, the mode shapes of vibrating rods with variable boundary conditions are modelled and results are plotted. All possible conditions for the rods ends are incorporated ...
متن کامل